Advertisements
Advertisements
प्रश्न
If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______
पर्याय
2
-1
0
1
MCQ
रिकाम्या जागा भरा
उत्तर
If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to 2.
Explanation:
`lim_{x→2^-} f(x) = lim_{x→2^-} [x - 2] + lim_{x→2^-}|x - 5|`
= `lim_{h → 0}[2 - h - 2] + lim_{h → 0}|2 - h - 5|`
= `lim_{h → 0}[-h] + lim_{h → 0}(-3 - h)`
= `lim_{h → 0} (-1) + lim_{h → 0} (3 + h)`
= -1 + 3 = 2
shaalaa.com
Limits of Exponential and Logarithmic Functions
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?