Advertisements
Advertisements
प्रश्न
If f : R → R is defined by f(x) = |x|3, show that f''(x) exists for all real x and find it.
उत्तर
We have `f(x) = |x|^3, {:{(x^3", if" x ≥ 0),((-x)^3 = -x^3", if" x < 0):}`
Now, (L.H.D. at x = 0) =`lim_(x->0^-)(f(x) - f(0))/(x - 0)`
= `lim_(x->0^-)((-x^3 - 0)/(x))`
= `lim_(x->0^-)(-x^2)`
= 0
(RHD at x = 0) `lim_(x->0^+)(f(x) - f(0))/(x - 0)`
= `lim_(x->0^+)((x^3 - 0)/(x))`
= `lim_(x->0)(-x^2)`
= 0
∴ (LHD of f(x) at x = 0) = (RHD of f(x) at x = 0)
So, f(x) is differentiable at x = 0 and the derivative of f(x) is given by
f'(x) = `{:{(3x^2", if" x ≥ 0),(-3x^2", if" x < 0):}`
Now, (LHD of f'(x) at x = 0) = `lim_(x->0^-)(f^'(x) - f^'(0))/(x - 0)`
= `lim_(x->0^-)((-3x^2 - 0)/x)`
= `lim_(x->0^-)(-3x)`
= 0
(RHD of f'(x) at x = 0) = `lim_(x->0^+)(f^'(x) - f^'(0))/(x - 0)`
= `lim_(x->0^+)((3x^2 - 0)/(x - 0))`
= `lim_(x->0^+)(3x)`
= 0
∴ (LHD of f'(x) at x = 0) = (RHD of f'(x) at x = 0)
So, f'(x) is differentiable at x = 0.
Hence, f''(x) = `{:{(6x", if" x ≥ 0),(-6x", if" x < 0):}`.