Advertisements
Advertisements
प्रश्न
If f(x) = x4 − 2x3 + 3x2 − ax − b when divided by x − 1, the remainder is 6, then find the value of a + b
उत्तर
When polynomial f(x) = x4 − 2x3 + 3x2 − ax − b divided by x − 1 the remainder is 6.
i.e. f(1) =6
`(1)^4 - 2(1)^3 +3(1)^2 -a(1) - b= 6`
` 1- 2 +3 -a - b = 6`
`2 -(a +b) = 6`
`(a+b) = -4`
Thus, the value of a +b = -4.
APPEARS IN
संबंधित प्रश्न
Identify polynomials in the following:
`q(x)=2x^2-3x+4/x+2`
Identify constant, linear, quadratic and cubic polynomials from the following polynomials:
`f(x)=0`
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x.
The polynomials ax3 + 3x2 − 3 and 2x3 − 5x + a when divided by (x − 4) leave the remainders R1 and R2 respectively. Find the values of the following cases, if 2R1 − R2 = 0.
Find the values of p and q so that x4 + px3 + 2x3 − 3x + q is divisible by (x2 − 1).
x3 − 23x2 + 142x − 120
y3 − 7y + 6
If x2 + x + 1 is a factor of the polynomial 3x3 + 8x2 + 8x + 3 + 5k, then the value of k is
Factorise the following:
2a2 + 9a + 10
Factorise the following:
(a + b)2 + 9(a + b) + 18