Advertisements
Advertisements
प्रश्न
If f(x) = x4 − 2x3 + 3x2 − ax − b when divided by x − 1, the remainder is 6, then find the value of a + b
उत्तर
When polynomial f(x) = x4 − 2x3 + 3x2 − ax − b divided by x − 1 the remainder is 6.
i.e. f(1) =6
`(1)^4 - 2(1)^3 +3(1)^2 -a(1) - b= 6`
` 1- 2 +3 -a - b = 6`
`2 -(a +b) = 6`
`(a+b) = -4`
Thus, the value of a +b = -4.
APPEARS IN
संबंधित प्रश्न
Identify polynomials in the following:
`f(x)=2+3/x+4x`
If `x = 2` is a root of the polynomial `f(x) = 2x2 – 3x + 7a` find the value of a.
f(x) = x3 − 6x2 + 2x − 4, g(x) = 1 − 2x
Show that (x − 2), (x + 3) and (x − 4) are factors of x3 − 3x2 − 10x + 24.
What must be added to x3 − 3x2 − 12x + 19 so that the result is exactly divisibly by x2 + x - 6 ?
2x4 − 7x3 − 13x2 + 63x − 45
Write the remainder when the polynomialf(x) = x3 + x2 − 3x + 2 is divided by x + 1.
If both x − 2 and \[x - \frac{1}{2}\] are factors of px2 + 5x + r, then
Factorise the following:
x² + 10x + 24
Factorise the following:
z² + 4z – 12