Advertisements
Advertisements
प्रश्न
Show that (x − 2), (x + 3) and (x − 4) are factors of x3 − 3x2 − 10x + 24.
उत्तर
Let `f(x) = 2^3 - 3x^2 - 10x + 24` be the given polynomial.
By factor theorem,
(x-2) , (x+3)and (x-4) are the factor of f(x).
If f(2) , f(-3)and f(4) are all equal to zero.
Now,
`f(2) = (2)^3 - 3(2)^2 - 10(2) + 24`
`= 8 -12 - 20 +24`
`= 32 -32`
` = 0`
also
`f(-3) = (-3)^3 -3(-3)^2 - 10(-3) + 24`
` = -27 -27 + 30 + 24`
` = -54 + 54`
` = 0`
And
`f(4)= (4)^3 - 3(4)^2 - 10(4) + 24`
` = 64 - 48 - 40 + 24`
`= 88 - 88`
= 0
Hence, (x − 2), (x + 3) and (x-4) are the factor of polynomial f(x).
APPEARS IN
संबंधित प्रश्न
Write the coefficient of x2 in the following:
`sqrt3x-7`
Identify polynomials in the following:
`f(x)=4x^3-x^2-3x+7`
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x + 1.
Find the value k if x − 3 is a factor of k2x3 − kx2 + 3kx − k.
What must be subtracted from x3 − 6x2 − 15x + 80 so that the result is exactly divisible by x2 + x − 12?
x4 + 10x3 + 35x2 + 50x + 24
If x + 2 is a factor of x2 + mx + 14, then m =
If (3x − 1)7 = a7x7 + a6x6 + a5x5 +...+ a1x + a0, then a7 + a5 + ...+a1 + a0 =
If x2 − 1 is a factor of ax4 + bx3 + cx2 + dx + e, then
Factorise the following:
z² + 4z – 12