Advertisements
Advertisements
प्रश्न
If x + 2 is a factor of x2 + mx + 14, then m =
पर्याय
7
2
9
14
उत्तर
As (x+2)is a factor of f(x) =x^2 +mx + 14
Therefore, f(-2) =0
`(-2)^2 +m(-2)+14 = 0`
`4-2m + 14 = 0`
`m = 9`
APPEARS IN
संबंधित प्रश्न
f(x) = 9x3 − 3x2 + x − 5, g(x) = \[x - \frac{2}{3}\]
The polynomials ax3 + 3x2 − 3 and 2x3 − 5x + a when divided by (x − 4) leave the remainders R1 and R2 respectively. Find the values of the following cases, if 2R1 − R2 = 0.
Find the values of a and b so that (x + 1) and (x − 1) are factors of x4 + ax3 − 3x2 + 2x + b.
2x4 − 7x3 − 13x2 + 63x − 45
Define zero or root of a polynomial.
If x + 1 is a factor of x3 + a, then write the value of a.
If both x − 2 and \[x - \frac{1}{2}\] are factors of px2 + 5x + r, then
Factorise the following:
9 – 18x + 8x2
Factorise the following:
8m3 – 2m2n – 15mn2
Factorise:
x3 – 6x2 + 11x – 6