Advertisements
Advertisements
प्रश्न
If x + 2 is a factor of x2 + mx + 14, then m =
विकल्प
7
2
9
14
उत्तर
As (x+2)is a factor of f(x) =x^2 +mx + 14
Therefore, f(-2) =0
`(-2)^2 +m(-2)+14 = 0`
`4-2m + 14 = 0`
`m = 9`
APPEARS IN
संबंधित प्रश्न
If the polynomials 2x3 + ax2 + 3x − 5 and x3 + x2 − 4x +a leave the same remainder when divided by x −2, find the value of a.
The polynomials ax3 + 3x2 − 3 and 2x3 − 5x + a when divided by (x − 4) leave the remainders R1 and R2 respectively. Find the values of the following cases, if 2R1 − R2 = 0.
In the following two polynomials, find the value of a, if x + a is a factor x3 + ax2 − 2x +a + 4.
x3 − 23x2 + 142x − 120
y3 − 2y2 − 29y − 42
2x4 − 7x3 − 13x2 + 63x − 45
If x + 1 is a factor of x3 + a, then write the value of a.
Factorise the following:
y2 – 16y – 80
Factorise the following:
a4 – 3a2 + 2
(x + y)(x2 – xy + y2) is equal to