Advertisements
Advertisements
प्रश्न
2x4 − 7x3 − 13x2 + 63x − 45
उत्तर
Let f(x) 2x4 − 7x3 − 13x2 + 63x − 45 be the given polynomial.
Now, putting x = 1we get
`f(1) = 2(1)^4 - 7(1)^3 - 13(1)^2 + 63(1) - 45`
` = 2-7 -13 + 63 - 45`
` = 65 - 65 = 0`
Therefore,(x -1)is a factor of polynomial f(x).
Now,
`f(x) = 2x^3 (x -1) - 5x^2(x -1) - 18x (x-1) + 45(x -1)`
` = (x -1) {2x^3 - 5x^2 - 18x + 45}`
` = (x -1)g(x) .... (1)`
Where `g(x) = 2x^2 - 5x^2 - 18x + 45`
Putting x = 3,we get
`g(3) = 2(3)^3 - 5(3)^2 - 18(3) + 45`
` = 54 - 45 - 54 + 45`
` = 0`
Therefore, (x -3)is a factor of g(x).
Now,
`g(x) = 2x^2 (x -3) + x(x -3) - 15(x -3)`
` = (x -3){2x^2 + x - 15}`
` = (x -3){2x ^2 + 6x - 5x - 15}`
` = (x -3){(2x - 5)(2x +3)}`
` = (x - 3) (x + 3)(2x -5) ..............(2)`
From equation (i) and (ii), we get
`f(x) = (x -1) (x -3)(x +3) (2x -5)`
Hence (x - 1),(x - 3),(x + 3) and (2x-5)are the factors of polynomial f(x).
APPEARS IN
संबंधित प्रश्न
Identify constant, linear, quadratic and cubic polynomials from the following polynomials:
`g(x)=2x^3-7x+4`
f(x) = 4x4 − 3x3 − 2x2 + x − 7, g(x) = x − 1
f(x) = 9x3 − 3x2 + x − 5, g(x) = \[x - \frac{2}{3}\]
In the following two polynomials, find the value of a, if x + a is a factor x3 + ax2 − 2x +a + 4.
3x3 − x2 − 3x + 1
If \[x = \frac{1}{2}\] is a zero of the polynomial f(x) = 8x3 + ax2 − 4x + 2, find the value of a.
Find the remainder when x3 + 4x2 + 4x − 3 is divided by x.
If x3 + 6x2 + 4x + k is exactly divisible by x + 2, then k =
When x3 − 2x2 + ax − b is divided by x2 − 2x − 3, the remainder is x − 6. The values of a and b are respectively
If (3x − 1)7 = a7x7 + a6x6 + a5x5 +...+ a1x + a0, then a7 + a5 + ...+a1 + a0 =