Advertisements
Advertisements
प्रश्न
If \[x = \frac{1}{2}\] is a zero of the polynomial f(x) = 8x3 + ax2 − 4x + 2, find the value of a.
उत्तर
Since `x = 1/2`is a zero of polynomial f(x).
Therefore `f(1/2) = 0`
` ⇒ 8(1/2)^3+ a(1/2)^2 - 4(1/2) + 2 = 0`
`⇒ 1 + a / 4 - 2 +2 = 0`
⇒` a = -4`
The value of a is -4.
APPEARS IN
संबंधित प्रश्न
Identify constant, linear, quadratic and cubic polynomials from the following polynomials
`p(x)=2x^2-x+4`
If the polynomials 2x3 + ax2 + 3x − 5 and x3 + x2 − 4x +a leave the same remainder when divided by x −2, find the value of a.
Find the remainder when x3 + 3x2 + 3x + 1 is divided by \[x + \pi\] .
f(x) = x5 + 3x4 − x3 − 3x2 + 5x + 15, g(x) = x + 3
Find the value k if x − 3 is a factor of k2x3 − kx2 + 3kx − k.
Find α and β, if x + 1 and x + 2 are factors of x3 + 3x2 − 2αx + β.
If x140 + 2x151 + k is divisible by x + 1, then the value of k is
If x + 2 is a factor of x2 + mx + 14, then m =
Factorise the following:
p² – 6p – 16
Factorise the following:
t² + 72 – 17t