Advertisements
Advertisements
प्रश्न
If x140 + 2x151 + k is divisible by x + 1, then the value of k is
विकल्प
1
-3
2
-2
उत्तर
As f(x) = x140 + 2x151 + k is divisible by (x +1).
i.e., (x+1)is a factor of f(x).
Therefore, f(-1) = 0
`(-1)^140+2(-1)^151 + k =0`
`1 -2 +k =0`
`k=1`
APPEARS IN
संबंधित प्रश्न
f(x) = x4 − 3x2 + 4, g(x) = x − 2
\[f(x) = 3 x^4 + 2 x^3 - \frac{x^2}{3} - \frac{x}{9} + \frac{2}{27}, g(x) = x + \frac{2}{3}\]
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x + 1.
Show that (x + 4) , (x − 3) and (x − 7) are factors of x3 − 6x2 − 19x + 84
Find the value of a such that (x − 4) is a factors of 5x3 − 7x2 − ax − 28.
Find the values of a and b so that (x + 1) and (x − 1) are factors of x4 + ax3 − 3x2 + 2x + b.
x4 − 2x3 − 7x2 + 8x + 12
2x4 − 7x3 − 13x2 + 63x − 45
If (3x − 1)7 = a7x7 + a6x6 + a5x5 +...+ a1x + a0, then a7 + a5 + ...+a1 + a0 =
Factorise the following:
a2 + 10a – 600