Advertisements
Advertisements
प्रश्न
x4 − 2x3 − 7x2 + 8x + 12
उत्तर
Let `f(x) = x^4 - 2x^3 - 7x^2 + 8x + 12` be the given polynomial.
Now, putting x = -1we get
`f (-1) = (-1)^4 -2 (-1)^3 - 7 ( -1)^2 + 8 (-1)+12`
` = 1 + 2 - 7 - 8 _ 12 = -15 + 15`
` = 0`
Therefore, (x + 1)is a factor of polynomial f(x).
Now,
\[f(x) = x^4 - 3 x^3 + x^3 - 3 x^2 - 4 x^2 + 12x - 4x + 12\]
`f(x) = x^3 (x+1) -3x^2 (x +1) - 4x(x+1) + 12 (x +1)`
` = (x +1){x^3 -3x^2 - 4x + 12}`
`=(x+1)g(x) ......... (1)`
Where `g(x)=x^3 -3x^2 - 4x + 12`
Putting x = 2,we get
`g(2) = (2)^3 -3(2)^2 - 4 (2) + 12`
`8 -12 -8 +12 = 20 -20`
` = 0`
Therefore, (x -2)is the factor of g(x).
Now,
\[g(x) = x^3 - 2 x^2 - x^2 - 6x + 2x + 12\]
`g(x) = x^2 (x -2) -x (x -2) -6(x - 2)`
` = (x -2){x^2 -x -6}`
` = (x-2){x^2 - 3x +2x -6}`
` = (x-2)(x+2) (x-3) ......... (2)`
From equation (i) and (ii), we get
`f(x) = (x+1)(x -2)(x+2)(x-3)`
Hence (x +1),(x -2),(x +2) and (x-3) are the factors of polynomial f(x).
APPEARS IN
संबंधित प्रश्न
Write the degrees of the following polynomials:
7
f(x) = 2x4 − 6x3 + 2x2 − x + 2, g(x) = x + 2
Find the remainder when x3 + 3x2 + 3x + 1 is divided by \[x + \pi\] .
f(x) = 3x3 + x2 − 20x +12, g(x) = 3x − 2
In the following two polynomials, find the value of a, if x + a is a factor x3 + ax2 − 2x +a + 4.
What must be added to x3 − 3x2 − 12x + 19 so that the result is exactly divisibly by x2 + x - 6 ?
Using factor theorem, factorize each of the following polynomials:
x3 + 6x2 + 11x + 6
2y3 − 5y2 − 19y + 42
If x + 1 is a factor of the polynomial 2x2 + kx, then k =
(x+1) is a factor of xn + 1 only if