Advertisements
Advertisements
प्रश्न
Using factor theorem, factorize each of the following polynomials:
x3 + 6x2 + 11x + 6
उत्तर
Let f(x) = x3 + 6x2 + 11x + 6 be the given polynomial.
Now, put the x =-1we get
`f(-1) = (-1)^3 + 6(-1)^2 + 11(-1) + 6`
` = -1 + 6 -11 + 6`
` = -12 + 12`
` = 0`
Therefore, (x +1)is a factor of f(x).
Now,
`f(x) = x^2 (x+1) + 5x (x +1) + 6 (x+1)`
` = (x +1){x^2 + 5x + 6}`
` = (x+1) {x^2 + 3x + 2x + 6}`
` = (x +1) (x+2)(x+3)`
`f(x) = x^2 (x+1) + 5`
Hence, (x+1)(x+2)(x+3)are the factors of f(x).
APPEARS IN
संबंधित प्रश्न
Write the degrees of the following polynomials:
`5y-sqrt2`
Identify constant, linear, quadratic and cubic polynomials from the following polynomials:
`r(x)=3x^2+4x^2+5x-7`
f(x) = x3 − 6x2 + 2x − 4, g(x) = 1 − 2x
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x.
In the following two polynomials, find the value of a, if x − a is factor x6 − ax5 + x4 − ax3 + 3x − a + 2.
x3 − 23x2 + 142x − 120
2y3 + y2 − 2y − 1
If f(x) = x4 − 2x3 + 3x2 − ax − b when divided by x − 1, the remainder is 6, then find the value of a + b
If x3 + 6x2 + 4x + k is exactly divisible by x + 2, then k =
Factorise the following:
(a + b)2 + 9(a + b) + 18