Advertisements
Advertisements
प्रश्न
Using factor theorem, factorize each of the following polynomials:
x3 + 6x2 + 11x + 6
उत्तर
Let f(x) = x3 + 6x2 + 11x + 6 be the given polynomial.
Now, put the x =-1we get
`f(-1) = (-1)^3 + 6(-1)^2 + 11(-1) + 6`
` = -1 + 6 -11 + 6`
` = -12 + 12`
` = 0`
Therefore, (x +1)is a factor of f(x).
Now,
`f(x) = x^2 (x+1) + 5x (x +1) + 6 (x+1)`
` = (x +1){x^2 + 5x + 6}`
` = (x+1) {x^2 + 3x + 2x + 6}`
` = (x +1) (x+2)(x+3)`
`f(x) = x^2 (x+1) + 5`
Hence, (x+1)(x+2)(x+3)are the factors of f(x).
APPEARS IN
संबंधित प्रश्न
Identify polynomials in the following:
`p(x)=2/3x^3-7/4x+9`
Identify constant, linear, quadratic and cubic polynomials from the following polynomials
`p(x)=2x^2-x+4`
If `f(x) = 2x^2 - 13x^2 + 17x + 12` find f(2)
f(x) = 4x3 − 12x2 + 14x − 3, g(x) 2x − 1
Find the value of a, if x + 2 is a factor of 4x4 + 2x3 − 3x2 + 8x + 5a.
In the following two polynomials, find the value of a, if x − a is factor (x5 − a2x3 + 2x + a + 1).
Define zero or root of a polynomial.
Write the remainder when the polynomialf(x) = x3 + x2 − 3x + 2 is divided by x + 1.
If x + a is a factor of x4 − a2x2 + 3x − 6a, then a =
(x+1) is a factor of xn + 1 only if