Advertisements
Advertisements
प्रश्न
What must be added to x3 − 3x2 − 12x + 19 so that the result is exactly divisibly by x2 + x - 6 ?
उत्तर
Let p(x) = x3 − 3x2 − 12x + 19 and `q(x) = x^2 + x -6 `be the given polynomial.
When p(x) is divided by q(x), the reminder is a linear polynomial in x.
So, let r(x) = ax + b is added to p(x), so that p(x) + r(x) is divisible by q(x).
Let f(x) = p(x) + r(x)
Then,
`f(x) = x^3 -3x^2 -12x + 19 +ax + b`
` = x^3 -3x^2 + (a-12)x+ (19+b)`
We have,
`q(x) = x^2 + x-6`
` = (x +3)(x - 2)`
Clearly, q(x) is divisible by (x+3)and (x- 2)i.e., (x+3) and (x-2) are the factors of q(x).
Therefore, f (x) is divisible by q(x), if (x + 3) and (x-2)are factors of f(x), i.e.,
f(-3)and f(2) = 0
Now, f(-3) = 0
\[\Rightarrow\] f(-3) = (-3)3 -3(-3)2 + (a-12)(-3)+19+b = 0
\[\Rightarrow\] -27 - 27 - 3a + 36 + 19 + b = 0
\[\Rightarrow\] -27 - 27 - 3a + 36 + 19 + b = 0\[\Rightarrow\] -54 - 3a + b + 55 = 0
\[\Rightarrow\] -3a + b + 1 = 0 ---- (i)
And
`f(2) = (2)^3 -3(2)^2 + (a-12) + 19 +b = 0`
`8-12+2a - 24 +19 +b = 0`
`2a +b = 9 ............. (2)`
Subtracting (i) from (ii), we get,
`(2a +b)-(-3a + b) = 10`
`5a = 10`
`a=2`
Putting this value in equation (ii), we get,
`⇒ 2 xx 2 +b = 9`
`b = 5`
Hence, p(x) is divisible by q(x) if (2x + 5)added to it.
APPEARS IN
संबंधित प्रश्न
Write the coefficient of x2 in the following:
`pi/6x^2- 3x+4`
Write the degrees of each of the following polynomials
`7x3 + 4x2 – 3x + 12`
Identify polynomials in the following:
`f(x)=4x^3-x^2-3x+7`
Identify polynomials in the following:
`h(x)=x^4-x^(3/2)+x-1`
Find the integral roots of the polynomial f(x) = x3 + 6x2 + 11x + 6.
Find the remainder when x3 + 3x2 + 3x + 1 is divided by \[x - \frac{1}{2}\].
If x51 + 51 is divided by x + 1, the remainder is
Factorise the following:
y2 – 16y – 80
Factorise:
x3 + x2 – 4x – 4
Factorise:
3x3 – x2 – 3x + 1