Advertisements
Advertisements
प्रश्न
Factorise:
x3 + x2 – 4x – 4
उत्तर
Let p(x) = x3 + x2 – 4x – 4
Constant term of p(x) = – 4
Factors of – 4 are ±1, ±2, ±4
By trial, we find that p(–1) = 0, so (x + 1) is a factor of p(x)
Now, we see that x3 + x2 – 4x – 4
= x2(x + 1) – 4(x + 1)
= (x + 1)(x2 – 4) ...[Taking (x + 1) common factor]
Now, x2 – 4 = x2 – 22
= (x + 2)(x – 2) ...[Using identity, a2 – b2 = (a – b)(a + b)]
∴ x3 + x2 – 4x – 4 = (x + 1)(x – 2)(x + 2)
APPEARS IN
संबंधित प्रश्न
The polynomials ax3 + 3x2 − 3 and 2x3 − 5x + a when divided by (x − 4) leave the remainders R1 and R2 respectively. Find the value of the following case, if R1 = R2.
Show that (x + 4) , (x − 3) and (x − 7) are factors of x3 − 6x2 − 19x + 84
Find the value k if x − 3 is a factor of k2x3 − kx2 + 3kx − k.
Find the values of a and b so that (x + 1) and (x − 1) are factors of x4 + ax3 − 3x2 + 2x + b.
What must be added to 3x3 + x2 − 22x + 9 so that the result is exactly divisible by 3x2 + 7x − 6?
x3 + 13x2 + 32x + 20
Factorize of the following polynomials:
4x3 + 20x2 + 33x + 18 given that 2x + 3 is a factor.
Factorise the following:
y2 – 16y – 80
Factorise the following:
a4 – 3a2 + 2
Factorise:
2x3 – 3x2 – 17x + 30