Advertisements
Advertisements
प्रश्न
Factorise:
x3 – 6x2 + 11x – 6
उत्तर
Let p(x) = x3 – 6x2 + 11x – 6
Constant term of p(x) = – 6
Factors of – 6 are ±1, ±2, ±3, ±6.
By trial, we find that p(1) = 0, so (x – 1) is a factor of p(x) ...[∵ (1)3 – 6(1)2 + 11(1) – 6 = 1 – 6 + 11 – 6 = 0]
Now, we see that x3 – 6x2 + 11x = 6
= x3 – x2 – 5x2 + 5x + 6x – 6
= x2(x – 1) – 5x(x – 1) + 6(x – 1)
= (x – 1)(x2 – 5x + 6) ...[Taking (x – 1) common factor]
Now, (x2 – 5x + 6) = x2 – 3x – 2x + 6 ...[By splitting the middle term]
= x(x – 3) – 2(x – 2)
= (x – 3)(x – 2)
∴ x3 – 6x2 + 11x – 6 = (x – 1)(x – 2)(x – 3)
APPEARS IN
संबंधित प्रश्न
Write the degrees of the following polynomials:
`5y-sqrt2`
Write the degrees of the following polynomials:
7
Identify polynomials in the following:
`p(x)=2/3x^3-7/4x+9`
Identify polynomials in the following:
`f(x)=2+3/x+4x`
Find the integral roots of the polynomial f(x) = x3 + 6x2 + 11x + 6.
\[f(x) = 3 x^4 + 2 x^3 - \frac{x^2}{3} - \frac{x}{9} + \frac{2}{27}, g(x) = x + \frac{2}{3}\]
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x.
f(x) = 2x3 − 9x2 + x + 12, g(x) = 3 − 2x
If (3x − 1)7 = a7x7 + a6x6 + a5x5 +...+ a1x + a0, then a7 + a5 + ...+a1 + a0 =
Factorise the following:
5x2 – 29xy – 42y2