Advertisements
Advertisements
प्रश्न
Find the value k if x − 3 is a factor of k2x3 − kx2 + 3kx − k.
उत्तर
Let `f(x) = k^2 x^3 - kx^2 + 3kx - k` be the given polynomial.
By the factor theorem,
(x − 3) is a factor of f(x) if f (3) = 0
Therefore,
`f(3) = k^2 (3)^3 - k(3)^2 + 3k(3) - k = 0`
\[\Rightarrow 27 k^2 - 9k + 9k - k = 0\]
\[ \Rightarrow 27 k^2 - k = 0\]
\[ \Rightarrow k\left( 27k - 1 \right) = 0\]
\[ \Rightarrow k = 0 \text { or k } = \frac{1}{27}\]
Hence, the value of k is 0 or `1/27`.
APPEARS IN
संबंधित प्रश्न
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x + 1.
f(x) = 2x3 − 9x2 + x + 12, g(x) = 3 − 2x
f(x) = x3 − 6x2 + 11x − 6, g(x) = x2 − 3x + 2
Find the values of a and b, if x2 − 4 is a factor of ax4 + 2x3 − 3x2 + bx − 4.
Using factor theorem, factorize each of the following polynomials:
x3 + 6x2 + 11x + 6
x3 + 2x2 − x − 2
Factorize of the following polynomials:
x3 + 13x2 + 31x − 45 given that x + 9 is a factor
x4 − 2x3 − 7x2 + 8x + 12
If f(x) = x4 − 2x3 + 3x2 − ax − b when divided by x − 1, the remainder is 6, then find the value of a + b
Factorise the following:
12x2 + 36x2y + 27y2x2