Advertisements
Advertisements
प्रश्न
Find the value of a, if x + 2 is a factor of 4x4 + 2x3 − 3x2 + 8x + 5a.
उत्तर
Let 4x4 + 2x3 − 3x2 + 8x + 5a be the polynomial.
By the factor theorem,
(x+2)is a factor of f(x) if f(−2) = 0.
Therefore,
`f(2) = 4(-2)^4 + 2(-2)^3 - 3(-2)^2 + 8(-2) + 5a = 0`
`64 - 16 - 12 - 16 + 5a = 0`
`5a = -20`
`a = -4`
Hence, `a = -4`
APPEARS IN
संबंधित प्रश्न
Write the degrees of the following polynomials:
`12-x+2x^3`
Find the integral roots of the polynomial f(x) = x3 + 6x2 + 11x + 6.
f(x) = 3x3 + x2 − 20x +12, g(x) = 3x − 2
If both x + 1 and x − 1 are factors of ax3 + x2 − 2x + b, find the values of a and b.
If x3 + 6x2 + 4x + k is exactly divisible by x + 2, then k =
Factorise the following:
x² + 10x + 24
Factorise the following:
y2 – 16y – 80
Factorise the following:
9 – 18x + 8x2
Factorise the following:
(p – q)2 – 6(p – q) – 16
Factorise:
3x3 – x2 – 3x + 1