Advertisements
Advertisements
प्रश्न
Find the value of a such that (x − 4) is a factors of 5x3 − 7x2 − ax − 28.
उत्तर
Let `f(x) = 5x^3 - 7x^2 - ax - 28` be the given polynomial.
By the factor theorem,
(x − 4) is a factor of f(x).
Therefore f(4) = 0
Hence , `f(4) = 5(4)^2 - 7(4)^2 - a (4) - 28 = 0`
\[\Rightarrow 320 - 112 - 4a - 28 = 0\]
\[ \Rightarrow 180 - 4a = 0\]
\[ \Rightarrow a = \frac{180}{4} = 45\]
Hence, a = 45
APPEARS IN
संबंधित प्रश्न
Write the degrees of the following polynomials
0
Identify polynomials in the following:
`f(x)=4x^3-x^2-3x+7`
Give one example each of a binomial of degree 35, and of a monomial of degree 100.
Show that (x − 2), (x + 3) and (x − 4) are factors of x3 − 3x2 − 10x + 24.
Show that (x + 4) , (x − 3) and (x − 7) are factors of x3 − 6x2 − 19x + 84
Find the value k if x − 3 is a factor of k2x3 − kx2 + 3kx − k.
If x + 2 is a factor of x2 + mx + 14, then m =
If (x − 1) is a factor of polynomial f(x) but not of g(x) , then it must be a factor of
If (3x − 1)7 = a7x7 + a6x6 + a5x5 +...+ a1x + a0, then a7 + a5 + ...+a1 + a0 =
If x2 − 1 is a factor of ax4 + bx3 + cx2 + dx + e, then