Advertisements
Advertisements
प्रश्न
For what value of a is (x − 5) a factor of x3 − 3x2 + ax − 10?
उत्तर
Let f(x) = x3 − 3x2 + ax − 10 be the given polynomial.
By factor theorem, (x-5)is the factor of f(x), if f (5) = 0
Therefore,
`f(5) = (5)^3 - 3(5)^2 + a(5) - 10 = 0`
` 125 - 75 + 5a - 10 = 0 `
`5a = -40`
a = -8
Hence, a = − 8.
APPEARS IN
संबंधित प्रश्न
f(x) = 2x4 − 6x3 + 2x2 − x + 2, g(x) = x + 2
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x.
Show that (x + 4) , (x − 3) and (x − 7) are factors of x3 − 6x2 − 19x + 84
Find the value k if x − 3 is a factor of k2x3 − kx2 + 3kx − k.
If x3 + ax2 − bx+ 10 is divisible by x2 − 3x + 2, find the values of a and b.
2y3 − 5y2 − 19y + 42
2x4 − 7x3 − 13x2 + 63x − 45
If x − 3 is a factor of x2 − ax − 15, then a =
Factorise the following:
`1/x^2 + 1/y^2 + 2/(xy)`
Factorise:
x3 – 6x2 + 11x – 6