Advertisements
Advertisements
प्रश्न
Find the value of a such that (x − 4) is a factors of 5x3 − 7x2 − ax − 28.
उत्तर
Let `f(x) = 5x^3 - 7x^2 - ax - 28` be the given polynomial.
By the factor theorem,
(x − 4) is a factor of f(x).
Therefore f(4) = 0
Hence , `f(4) = 5(4)^2 - 7(4)^2 - a (4) - 28 = 0`
\[\Rightarrow 320 - 112 - 4a - 28 = 0\]
\[ \Rightarrow 180 - 4a = 0\]
\[ \Rightarrow a = \frac{180}{4} = 45\]
Hence, a = 45
APPEARS IN
संबंधित प्रश्न
Identify constant, linear, quadratic and cubic polynomials from the following polynomials
`p(x)=2x^2-x+4`
In each of the following, using the remainder theorem, find the remainder when f(x) is divided by g(x) and verify the result by actual division: (1−8)
f(x) = x3 + 4x2 − 3x + 10, g(x) = x + 4
\[f(x) = 3 x^4 + 2 x^3 - \frac{x^2}{3} - \frac{x}{9} + \frac{2}{27}, g(x) = x + \frac{2}{3}\]
The polynomials ax3 + 3x2 − 3 and 2x3 − 5x + a when divided by (x − 4) leave the remainders R1 and R2 respectively. Find the values of the following case, if R1 + R2 = 0.
In the following two polynomials, find the value of a, if x + a is a factor x4 − a2x2 + 3x −a.
If \[x = \frac{1}{2}\] is a zero of the polynomial f(x) = 8x3 + ax2 − 4x + 2, find the value of a.
The value of k for which x − 1 is a factor of 4x3 + 3x2 − 4x + k, is
If x + 2 and x − 1 are the factors of x3 + 10x2 + mx + n, then the values of m and n are respectively
Let f(x) be a polynomial such that \[f\left( - \frac{1}{2} \right)\] = 0, then a factor of f(x) is
Factorise the following:
(a + b)2 + 9(a + b) + 18