Advertisements
Advertisements
प्रश्न
In the following two polynomials, find the value of a, if x + a is a factor x4 − a2x2 + 3x −a.
उत्तर
Let `f(x) = x^4 - a^2x^2 + 3x - a ` be the polynomial. By factor theorem, (x + a) is a factor of the f(x), if f(− a) = 0, i.e.,
`f(-a) = (-a)^4 - a^2 (-a)^2 + 3(-a)-a = 0`
`a^4 - a^4 - 3a - a = 0`
-4a = 0
`a = 0`
Thus, the value of a is 0.
APPEARS IN
संबंधित प्रश्न
Write the coefficient of x2 in the following:
`pi/6x^2- 3x+4`
Identify constant, linear, quadratic and cubic polynomials from the following polynomials:
`h(x)=-3x+1/2`
If `f(x)=2x^2-13x^2+17x+12` find `f-(3)`
Find α and β, if x + 1 and x + 2 are factors of x3 + 3x2 − 2αx + β.
x3 − 6x2 + 3x + 10
x4 − 7x3 + 9x2 + 7x − 10
If \[x = \frac{1}{2}\] is a zero of the polynomial f(x) = 8x3 + ax2 − 4x + 2, find the value of a.
If x + 2 is a factor of x2 + mx + 14, then m =
If x + a is a factor of x4 − a2x2 + 3x − 6a, then a =
Factorise:
2x3 – 3x2 – 17x + 30