Advertisements
Advertisements
प्रश्न
In the following two polynomials, find the value of a, if x + a is a factor x3 + ax2 − 2x +a + 4.
उत्तर
Let f(x) = x3 + ax2 − 2x +a + 4 be the given polynomial.
By the factor theorem, (+ a) is the factor of f(x), if f(− a) = 0, i.e.,
`f(-a) = (-a)^3 + a(-a)^2 -2(-a) + a + 4 = 0`
`-a^3 + a^3 2a + a + 4 = 0`
`3a + 4 = 0`
`a = (-4)/3`
Thus, the value of a is − 4/3.
APPEARS IN
संबंधित प्रश्न
Identify constant, linear, quadratic and cubic polynomials from the following polynomials:
`f(x)=0`
Find the integral roots of the polynomial f(x) = x3 + 6x2 + 11x + 6.
f(x) = x5 + 3x4 − x3 − 3x2 + 5x + 15, g(x) = x + 3
Find the values of p and q so that x4 + px3 + 2x3 − 3x + q is divisible by (x2 − 1).
x4 − 2x3 − 7x2 + 8x + 12
The value of k for which x − 1 is a factor of 4x3 + 3x2 − 4x + k, is
Let f(x) be a polynomial such that \[f\left( - \frac{1}{2} \right)\] = 0, then a factor of f(x) is
If x2 − 1 is a factor of ax4 + bx3 + cx2 + dx + e, then
Factorise the following:
(p – q)2 – 6(p – q) – 16
Factorise the following:
m2 + 2mn – 24n2