Advertisements
Advertisements
प्रश्न
Find the values of p and q so that x4 + px3 + 2x3 − 3x + q is divisible by (x2 − 1).
उत्तर
Let f(x) = x4 + px3 + 2x3 − 3x + q and `g(x) = x^2 - 1`be the given polynomials.
We have,
`g(x)= x^2 - 1`
` = (x-1)(x+ 1)`
Here, (x-1),(x+1)are the factor of g(x).
If f(x) is divisible by (x-1)and (x+1), then (x-1)and (x+1) are factor of f(x).
Therefore, f(1) and f(−1) both must be equal to zero.
Therefore,
`f(1) = (1)^4 + p(a)^3 + 2(1)^2 - 3(1)+q` ......... (1)
`⇒ 1+ p + 2 - 3 + q = 0`
`p+q = 0`
and
`f(-1) = (-1)^4 + p(-1)^3 + 2(- 1)^2 - 3(-1) + q = 0`
` 1-p+2 + 3 +q = 0`
`-p + q = -6 ......(2)`
Adding both the equations, we get,
`(p+q) + (-p + q) = -6`
`2q = -6`
`q = -3`
Putting this value in (i)
`p+(-3) = 0`
`p = 3`
Hence, the value of p and q are 3, −3 respectively.
APPEARS IN
संबंधित प्रश्न
f(x) = 9x3 − 3x2 + x − 5, g(x) = \[x - \frac{2}{3}\]
f(x) = 3x3 + x2 − 20x +12, g(x) = 3x − 2
Find the value k if x − 3 is a factor of k2x3 − kx2 + 3kx − k.
Find the values of a and b so that (x + 1) and (x − 1) are factors of x4 + ax3 − 3x2 + 2x + b.
If both x + 1 and x − 1 are factors of ax3 + x2 − 2x + b, find the values of a and b.
3x3 − x2 − 3x + 1
If x + a is a factor of x4 − a2x2 + 3x − 6a, then a =
Let f(x) be a polynomial such that \[f\left( - \frac{1}{2} \right)\] = 0, then a factor of f(x) is
If (3x − 1)7 = a7x7 + a6x6 + a5x5 +...+ a1x + a0, then a7 + a5 + ...+a1 + a0 =
Factorise the following:
12x2 + 36x2y + 27y2x2