Advertisements
Advertisements
प्रश्न
The value of k for which x − 1 is a factor of 4x3 + 3x2 − 4x + k, is
पर्याय
3
1
-2
-3
उत्तर
As (x - 1)is a factor of polynomial f(x) = 4x3 + 3x2 − 4x + k
Therefore, f(1) = 0
`4(1)^3 + 3(1)^2 - 4(1) + k = 0`
`4 + 3 - 4 + k = 0`
` k = -3`
APPEARS IN
संबंधित प्रश्न
f(x) = 4x3 − 12x2 + 14x − 3, g(x) 2x − 1
f(x) = 9x3 − 3x2 + x − 5, g(x) = \[x - \frac{2}{3}\]
\[f(x) = 3 x^4 + 2 x^3 - \frac{x^2}{3} - \frac{x}{9} + \frac{2}{27}, g(x) = x + \frac{2}{3}\]
If the polynomials 2x3 + ax2 + 3x − 5 and x3 + x2 − 4x +a leave the same remainder when divided by x −2, find the value of a.
If x3 + 6x2 + 4x + k is exactly divisible by x + 2, then k =
Factorise the following:
6x2 + 16xy + 8y2
Factorise the following:
12x2 + 36x2y + 27y2x2
Factorise the following:
(p – q)2 – 6(p – q) – 16
(x + y)(x2 – xy + y2) is equal to
Factorise:
3x3 – x2 – 3x + 1