Advertisements
Advertisements
प्रश्न
If x + 2 and x − 1 are the factors of x3 + 10x2 + mx + n, then the values of m and n are respectively
पर्याय
5 and −3
17 and −8
7 and −18
23 and −19
उत्तर
It is given (x + 2)and (x - 1)are the factors of the polynomial
`f(x) = x^3 + 10x^2 + mx + n`
i.e., f(-2) =0 and f(1) = 0
Now
`f(-2) = (-2)^3 + 10(-2)^2 + m(-2) + n =0`
\[- 8 + 40 - 2m + n = 0\]
\[ \Rightarrow - 2m + n = - 32\]
\[ \Rightarrow 2m - n = 32 . . . (1)\]
`f(1) = (1)^3 + 10(1)^2 +m(1) + n = 0`
`1 + 10 +m + n = 0`
` m + n = -11 ........ (2)`
Solving equation (1) and (2) we get
m = 7 and n = − 18
APPEARS IN
संबंधित प्रश्न
Write the degrees of the following polynomials:
`12-x+2x^3`
If `f(x)=2x^2-13x^2+17x+12` find `f-(3)`
If x = 0 and x = −1 are the roots of the polynomial f(x) =2x3 − 3x2 + ax + b, find the value of a and b.
\[f(x) = 3 x^4 + 2 x^3 - \frac{x^2}{3} - \frac{x}{9} + \frac{2}{27}, g(x) = x + \frac{2}{3}\]
f(x) = 3x3 + x2 − 20x +12, g(x) = 3x − 2
Find the value of a, if x + 2 is a factor of 4x4 + 2x3 − 3x2 + 8x + 5a.
Find the values of p and q so that x4 + px3 + 2x3 − 3x + q is divisible by (x2 − 1).
2y3 + y2 − 2y − 1
Define zero or root of a polynomial.
(x + y)(x2 – xy + y2) is equal to