Advertisements
Advertisements
प्रश्न
f(x) = x5 + 3x4 − x3 − 3x2 + 5x + 15, g(x) = x + 3
उत्तर
It is given that f(x) = x5 + 3x4 − x3 − 3x2 + 5x + 15 and g(x) = x+3
By the factor theorem, g(x) is the factor of polynomial f(x).
i.e. x+3 =0
`f(-3) = (-3)^5 + 3(-3)^4 - (-3)^3 - 3(- 3)^2 + 5(-3) + 15`
f (−3) = 0
Hence, g(x) is the factor of polynomial f (x).
APPEARS IN
संबंधित प्रश्न
Write the degrees of the following polynomials
0
If x = 0 and x = −1 are the roots of the polynomial f(x) =2x3 − 3x2 + ax + b, find the value of a and b.
f(x) = 4x4 − 3x3 − 2x2 + x − 7, g(x) = x − 1
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x + 1.
x3 − 6x2 + 3x + 10
x3 − 23x2 + 142x − 120
Define zero or root of a polynomial.
If (x − 1) is a factor of polynomial f(x) but not of g(x) , then it must be a factor of
If (3x − 1)7 = a7x7 + a6x6 + a5x5 +...+ a1x + a0, then a7 + a5 + ...+a1 + a0 =
Factorise the following:
(p – q)2 – 6(p – q) – 16