Advertisements
Advertisements
प्रश्न
If (x − 1) is a factor of polynomial f(x) but not of g(x) , then it must be a factor of
पर्याय
f(x) g(x)
−f(x) + g(x)
f(x) − g(x)
\[\left\{ f(x) + g(x) \right\} g(x)\]
उत्तर
As (x -1)is a factor of polynomial f(x) but not of g(x)
Therefore f(1) = 0
Now,
Let p(x) = f(x).g(x)
Now
`p(1) = f(1) .g(1)`
`p(1) = 0 0.g(1)`
` = 0`
Therefore (x − 1) is also a factor of f(x).g(x).
APPEARS IN
संबंधित प्रश्न
If `f(x)=2x^2-13x^2+17x+12` find `f(0)`
f(x) = 2x4 − 6x3 + 2x2 − x + 2, g(x) = x + 2
f(x) = x3 −6x2 − 19x + 84, g(x) = x − 7
f(x) = 3x3 + x2 − 20x +12, g(x) = 3x − 2
Find the value of a such that (x − 4) is a factors of 5x3 − 7x2 − ax − 28.
In the following two polynomials, find the value of a, if x + a is a factor x4 − a2x2 + 3x −a.
x3 + 2x2 − x − 2
Factorise the following:
6x2 + 16xy + 8y2
Factorise the following:
`1/x^2 + 1/y^2 + 2/(xy)`
Factorise:
3x3 – x2 – 3x + 1