Advertisements
Advertisements
प्रश्न
x3 − 6x2 + 3x + 10
उत्तर १
Let f(x) = x3 − 6x2 + 3x + 10 be the given polynomial.
Now, putting x = -1we get
`f(-1) = (-1)^3 - 6(1)^2 + 3(-1) + 10`
` = -1 -6 -3 + 10`
` = -10 + 10`
` = 0`
Therefore, (x+1)is a factor of polynomial f(x).
Now,
\[f(x) = x^3 - 7 x^2 + x^2 + 10x - 7x + 10\]
`f(x) = x^2 (x + 1) - 7x(x+1)+10(x +1)`
` =(x +1){x^2 - 7x + 10} `
` = (x+1){x^2 - 5x - 2x + 10}`
` = (x+1)(x-5)(x-2)`
Hence, (x+1),(x-2) and (x-5) are the factors of the polynomial f(x).
उत्तर २
Let f(x) = x3 − 6x2 + 3x + 10 be the given polynomial.
Now, putting x = -1we get
`f(-1) = (-1)^3 - 6(1)^2 + 3(-1) + 10`
` = -1 -6 -3 + 10`
` = -10 + 10`
` = 0`
Therefore, (x+1)is a factor of polynomial f(x).
Now,
\[f(x) = x^3 - 7 x^2 + x^2 + 10x - 7x + 10\]
`f(x) = x^2 (x + 1) - 7x(x+1)+10(x +1)`
` =(x +1){x^2 - 7x + 10} `
` = (x+1){x^2 - 5x - 2x + 10}`
` = (x+1)(x-5)(x-2)`
Hence,(x+1),(x-2) and (x-5) are the factors of the polynomial f(x).
APPEARS IN
संबंधित प्रश्न
Write the coefficient of x2 in the following:
`sqrt3x-7`
Write the degrees of each of the following polynomials
`7x3 + 4x2 – 3x + 12`
Identify polynomials in the following:
`q(x)=2x^2-3x+4/x+2`
If `f(x) = 2x^2 - 13x^2 + 17x + 12` find f(2)
f(x) = 4x4 − 3x3 − 2x2 + x − 7, g(x) = x − 1
In each of the following, use factor theorem to find whether polynomial g(x) is a factor of polynomial f(x) or, not: (1−7)
f(x) = x3 − 6x2 + 11x − 6; g(x) = x − 3
Find the values of p and q so that x4 + px3 + 2x3 − 3x + q is divisible by (x2 − 1).
If both x − 2 and \[x - \frac{1}{2}\] are factors of px2 + 5x + r, then
(x + y)(x2 – xy + y2) is equal to
If (x + 5) and (x – 3) are the factors of ax2 + bx + c, then values of a, b and c are