Advertisements
Advertisements
प्रश्न
x3 − 6x2 + 3x + 10
उत्तर १
Let f(x) = x3 − 6x2 + 3x + 10 be the given polynomial.
Now, putting x = -1we get
`f(-1) = (-1)^3 - 6(1)^2 + 3(-1) + 10`
` = -1 -6 -3 + 10`
` = -10 + 10`
` = 0`
Therefore, (x+1)is a factor of polynomial f(x).
Now,
\[f(x) = x^3 - 7 x^2 + x^2 + 10x - 7x + 10\]
`f(x) = x^2 (x + 1) - 7x(x+1)+10(x +1)`
` =(x +1){x^2 - 7x + 10} `
` = (x+1){x^2 - 5x - 2x + 10}`
` = (x+1)(x-5)(x-2)`
Hence, (x+1),(x-2) and (x-5) are the factors of the polynomial f(x).
उत्तर २
Let f(x) = x3 − 6x2 + 3x + 10 be the given polynomial.
Now, putting x = -1we get
`f(-1) = (-1)^3 - 6(1)^2 + 3(-1) + 10`
` = -1 -6 -3 + 10`
` = -10 + 10`
` = 0`
Therefore, (x+1)is a factor of polynomial f(x).
Now,
\[f(x) = x^3 - 7 x^2 + x^2 + 10x - 7x + 10\]
`f(x) = x^2 (x + 1) - 7x(x+1)+10(x +1)`
` =(x +1){x^2 - 7x + 10} `
` = (x+1){x^2 - 5x - 2x + 10}`
` = (x+1)(x-5)(x-2)`
Hence,(x+1),(x-2) and (x-5) are the factors of the polynomial f(x).
APPEARS IN
संबंधित प्रश्न
Write the coefficient of x2 in the following:
`17 -2x + 7x^2`
f(x) = 4x4 − 3x3 − 2x2 + x − 7, g(x) = x − 1
f(x) = x5 + 3x4 − x3 − 3x2 + 5x + 15, g(x) = x + 3
f(x) = x3 − 6x2 + 11x − 6, g(x) = x2 − 3x + 2
If x3 + ax2 − bx+ 10 is divisible by x2 − 3x + 2, find the values of a and b.
If both x + 1 and x − 1 are factors of ax3 + x2 − 2x + b, find the values of a and b.
2y3 + y2 − 2y − 1
Write the remainder when the polynomialf(x) = x3 + x2 − 3x + 2 is divided by x + 1.
If x + 1 is a factor of x3 + a, then write the value of a.
(x+1) is a factor of xn + 1 only if