Advertisements
Advertisements
प्रश्न
x4 − 7x3 + 9x2 + 7x − 10
उत्तर
Let `f(x) = x^4 - 7x^2 + 9x^2 + 7x -10`be the given polynomial.
Now, putting x = 1,we get
\[f(1) = \left( 1 \right)^4 - 7 \left( 1 \right)^3 + 9 \left( 1 \right)^2 + 7\left( 1 \right) - 10\]
\[ = 1 - 7 + 9 + 7 - 10 = 0\]
Therefore, (x-1)is a factor of polynomial f(x).
Now,
\[f(x) = x^4 - x^3 - 6 x^3 + 6 x^2 + 3 x^2 - 3x + 10x - 10\]
`f(x) = x^3 (x-1) - 6x^2 (x-1) + 3x(x-1) + 10(x-1)`
`= (x - 1) {x^3 - 6x^2 +3x + 10}`
` = (x - 1)g(x) ........ (1)`
Where `g(x) = x^3 - 6x^2 + 32` +10
Putting x = -1we get
`g-(-1) = (-1)^3 -6(-1)^2 + 3(-1) + 10`
` = -1-6 -3 + 10`
` = -10 + 10 = 0`
Therefore, (x + 1)is a factor of g(x).
Now,
\[g(x) = x^3 - 7 x^2 + x^2 - 7x + 10x + 10\]
`g(x) = x^2 (x+1) -7x (x+1)+ 10(x + 1)`
` = (x +1){x^2 - 7x + 10}`
` = (x+1){x^2 - 5x - 2x + 10}`
` = (x+1)(x-2)(x-5) ........ (2)`
From equation (i) and (ii), we get
f(x) = (x-1)(x+1)(x-2)(x-5)
Hence (x+1),(x-1)(x-2)(x-5) and (x-5) are the factors of polynomial f(x).
APPEARS IN
संबंधित प्रश्न
Identify polynomials in the following:
`f(x)=2+3/x+4x`
\[f(x) = 3 x^4 + 2 x^3 - \frac{x^2}{3} - \frac{x}{9} + \frac{2}{27}, g(x) = x + \frac{2}{3}\]
Find the remainder when x3 + 3x2 + 3x + 1 is divided by \[x + \pi\] .
f(x) = 3x4 + 17x3 + 9x2 − 7x − 10; g(x) = x + 5
Find the values of a and b, if x2 − 4 is a factor of ax4 + 2x3 − 3x2 + bx − 4.
Mark the correct alternative in each of the following:
If x − 2 is a factor of x2 + 3ax − 2a, then a =
If x − a is a factor of x3 −3x2a + 2a2x + b, then the value of b is
If x + 2 is a factor of x2 + mx + 14, then m =
Factorise the following:
`sqrt(5)"a"^2 + 2"a" - 3sqrt(5)`
Factorise the following:
a4 – 3a2 + 2