Advertisements
Advertisements
Question
x4 − 7x3 + 9x2 + 7x − 10
Solution
Let `f(x) = x^4 - 7x^2 + 9x^2 + 7x -10`be the given polynomial.
Now, putting x = 1,we get
\[f(1) = \left( 1 \right)^4 - 7 \left( 1 \right)^3 + 9 \left( 1 \right)^2 + 7\left( 1 \right) - 10\]
\[ = 1 - 7 + 9 + 7 - 10 = 0\]
Therefore, (x-1)is a factor of polynomial f(x).
Now,
\[f(x) = x^4 - x^3 - 6 x^3 + 6 x^2 + 3 x^2 - 3x + 10x - 10\]
`f(x) = x^3 (x-1) - 6x^2 (x-1) + 3x(x-1) + 10(x-1)`
`= (x - 1) {x^3 - 6x^2 +3x + 10}`
` = (x - 1)g(x) ........ (1)`
Where `g(x) = x^3 - 6x^2 + 32` +10
Putting x = -1we get
`g-(-1) = (-1)^3 -6(-1)^2 + 3(-1) + 10`
` = -1-6 -3 + 10`
` = -10 + 10 = 0`
Therefore, (x + 1)is a factor of g(x).
Now,
\[g(x) = x^3 - 7 x^2 + x^2 - 7x + 10x + 10\]
`g(x) = x^2 (x+1) -7x (x+1)+ 10(x + 1)`
` = (x +1){x^2 - 7x + 10}`
` = (x+1){x^2 - 5x - 2x + 10}`
` = (x+1)(x-2)(x-5) ........ (2)`
From equation (i) and (ii), we get
f(x) = (x-1)(x+1)(x-2)(x-5)
Hence (x+1),(x-1)(x-2)(x-5) and (x-5) are the factors of polynomial f(x).
APPEARS IN
RELATED QUESTIONS
Identify polynomials in the following:
`p(x)=2/3x^3-7/4x+9`
Identify constant, linear, quadratic and cubic polynomials from the following polynomials:
`q(x)=4x+3`
In each of the following, using the remainder theorem, find the remainder when f(x) is divided by g(x) and verify the result by actual division: (1−8)
f(x) = x3 + 4x2 − 3x + 10, g(x) = x + 4
The polynomials ax3 + 3x2 − 3 and 2x3 − 5x + a when divided by (x − 4) leave the remainders R1 and R2 respectively. Find the values of the following cases, if 2R1 − R2 = 0.
f(x) = x3 −6x2 − 19x + 84, g(x) = x − 7
Show that (x − 2), (x + 3) and (x − 4) are factors of x3 − 3x2 − 10x + 24.
Find the value k if x − 3 is a factor of k2x3 − kx2 + 3kx − k.
If f(x) = x4 − 2x3 + 3x2 − ax − b when divided by x − 1, the remainder is 6, then find the value of a + b
If x2 − 1 is a factor of ax4 + bx3 + cx2 + dx + e, then
Factorise the following:
8m3 – 2m2n – 15mn2