Advertisements
Advertisements
प्रश्न
Find the values of a and b, if x2 − 4 is a factor of ax4 + 2x3 − 3x2 + bx − 4.
उत्तर
Let `f(x) = ax^4 + 2x^3 - 3x^2 + bx - 4` and `g(x) = (x^2 - 4)`be the given polynomial.
We have,
`g(x) = (x^2 - 4)`
` = (x-2) ( x + 2)`
`{because a^2 - b^2 = (a-b )(a+b)}`
⇒ (x − 2), (x + 2) are the factors of g(x).
By factor theorem, if (x − 2) and (x + 2) both are the factor of f(x)
Then f(2) and f(−2) are equal to zero.
Therefore,
`f(2) = a(2)^4 + 2(2)^3 - 3(2)^2 + b (2) - 4 =0`
`16a + 16 - 12 + 2b - 4 =0`
`16a+ 2b = 0`
` 8a + b =0` ...(i)
and
`f(2) = a(-2)^4 + 2(- 2)^3 - 3(-2)^2 + b (-2) - 4 =0`
`16a - 16 - 12 - 2b - 4 =0`
`16a- 2b = 32 = 0`
` 8a - b =16` ...(ii)
Adding these two equations, we get
`(8a + b) + (8a - b) = 16`
` 16a = 16`
`a= 1`
Putting the value of a in equation (i), we get
`8 xx 1+ b = 0`
` b = -8`
Hence, the value of a and b are 1, − 8 respectively.
APPEARS IN
संबंधित प्रश्न
Write the degrees of the following polynomials
0
If x − 2 is a factor of the following two polynomials, find the values of a in each case x5 − 3x4 − ax3 + 3ax2 + 2ax + 4.
In the following two polynomials, find the value of a, if x + a is a factor x3 + ax2 − 2x +a + 4.
y3 − 7y + 6
x4 − 2x3 − 7x2 + 8x + 12
If x2 + x + 1 is a factor of the polynomial 3x3 + 8x2 + 8x + 3 + 5k, then the value of k is
If both x − 2 and \[x - \frac{1}{2}\] are factors of px2 + 5x + r, then
Factorise the following:
(a + b)2 + 9(a + b) + 18
Factorise the following:
(p – q)2 – 6(p – q) – 16
If (x + 5) and (x – 3) are the factors of ax2 + bx + c, then values of a, b and c are