Advertisements
Advertisements
प्रश्न
3x3 − x2 − 3x + 1
उत्तर
Let `f(x) = 3x^3 - x^2 - 3x + 1` be the given polynomial.
Now, putting x = 1,we get
`f(1) = 3(1)^3 - (1)^2 - 3(1) + 1`
` = 3-1 -3 +1 = 0`
Therefore, (x-1)is a factor of polynomial f(x).
Now,
`f(x) = 3x^2 (x-1) + 2x(x-1)-1(x-1)`
` = (x-1){3x^2 + 2x - 1}`
` = (x-1 ){3x^2 + 2x -1}`
`= (x -1)(x+1)(3x-1)`
Hence (x -1),(x+1) and (3x - 1 )are the factors of polynomial f(x).
APPEARS IN
संबंधित प्रश्न
f(x) = 2x4 − 6x3 + 2x2 − x + 2, g(x) = x + 2
f(x) = x3 − 6x2 + 2x − 4, g(x) = 1 − 2x
If the polynomials ax3 + 3x2 − 13 and 2x3 − 5x + a, when divided by (x − 2) leave the same remainder, find the value of a.
Find the remainder when x3 + 3x2 + 3x + 1 is divided by 5 + 2x .
f(x) = 2x3 − 9x2 + x + 12, g(x) = 3 − 2x
If x + 1 is a factor of x3 + a, then write the value of a.
If x − a is a factor of x3 −3x2a + 2a2x + b, then the value of b is
If x140 + 2x151 + k is divisible by x + 1, then the value of k is
If (3x − 1)7 = a7x7 + a6x6 + a5x5 +...+ a1x + a0, then a7 + a5 + ...+a1 + a0 =
(x + y)(x2 – xy + y2) is equal to