मराठी

Factorise: 2x3 – 3x2 – 17x + 30 - Mathematics

Advertisements
Advertisements

प्रश्न

Factorise:

2x3 – 3x2 – 17x + 30

बेरीज

उत्तर

Let p(x) = 2x3 – 3x2 – 17x + 30

Constant term of p(x) = 30

∴ Factors of 30 are ±1, ±2, ±3, ±5, ±6, ±10, ±15, ±30

By trial, we find that p(2) = 0, so (x – 2) is a factor of p(x)  ...[∵ 2(2)3 – 3(2)2 – 17(2) + 30 = 16 – 12 – 34 + 30 = 0]

Now, we see that 2x3 – 3x2 – 17x + 30

= 2x3 – 4x2 + x2 – 2x – 15x + 30

= 2x2(x – 2) + x(x – 2) – 15(x – 2)

= (x – 2)(2x2 + x – 15)  ...[Taking (x – 2) common factor]

Now, (2x2 + x – 15) can be factorised either by splitting the middle term or by using the factor theorem.

Now, (2x2 – x – 15) = 2x2 + 6x – 5x – 15  ...[By splitting the middle term]

= 2x(x + 3) – 5(x + 3)

= (x + 3)(2x – 5)

∴ 2x3 – 3x2 – 17x + 30 = (x – 2)(x + 3)(2x – 5)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Polynomials - Exercise 2.3 [पृष्ठ २१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
पाठ 2 Polynomials
Exercise 2.3 | Q 24. (i) | पृष्ठ २१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×