Advertisements
Advertisements
प्रश्न
Verify whether the indicated numbers is zeros of the polynomials corresponding to them in the following case:
\[p(x) = x^3 - 6 x^2 + 11x - 6, x = 1, 2, 3\]
उत्तर
To check whether the given number is the zero of the polynomial or not we have to find p(1),p(2),and p(3)
`p(x) = x^3 - 6x^2 + 11x - 6`
`p(1) = (1)^3 - 6 xx (1)^2 + 11 xx (1) - 6`
` = 1-6 xx 1 + 11 xx 1 - 6`
` = 12 - 12 = 0`
`p(2) = (2)^3 - 6 xx (2)^2 + 11 xx (2) - 6`
` = 8-6 xx 4 + 11 xx 2 -6`
` = 8-24 + 22 -6`
` = 30 - 30`
p(2) = 0
And
`p(3) = (3)^3 - 6 xx (3)^2 + 11 xx 3 - 6`
` = 27 - 6 xx 9 + 11 xx 3 -6`
` = 27 - 54 + 33 -6`
` = 60 - 60`
p(3) = 0
Hence, x = 1, 2, 3 are the zeros of the polynomial p(x).
APPEARS IN
संबंधित प्रश्न
Write the coefficient of x2 in the following:
`9-12x +X^3`
If `f(x)=2x^2-13x^2+17x+12` find `f-(3)`
f(x) = 2x3 − 9x2 + x + 12, g(x) = 3 − 2x
In the following two polynomials, find the value of a, if x + a is a factor x3 + ax2 − 2x +a + 4.
3x3 − x2 − 3x + 1
Define zero or root of a polynomial.
If x2 − 1 is a factor of ax4 + bx3 + cx2 + dx + e, then
Factorise the following:
t² + 72 – 17t
Factorise the following:
(a + b)2 + 9(a + b) + 18
If x + 2a is a factor of x5 – 4a2x3 + 2x + 2a + 3, find a.