Advertisements
Advertisements
Question
Verify whether the indicated numbers is zeros of the polynomials corresponding to them in the following case:
\[p(x) = x^3 - 6 x^2 + 11x - 6, x = 1, 2, 3\]
Solution
To check whether the given number is the zero of the polynomial or not we have to find p(1),p(2),and p(3)
`p(x) = x^3 - 6x^2 + 11x - 6`
`p(1) = (1)^3 - 6 xx (1)^2 + 11 xx (1) - 6`
` = 1-6 xx 1 + 11 xx 1 - 6`
` = 12 - 12 = 0`
`p(2) = (2)^3 - 6 xx (2)^2 + 11 xx (2) - 6`
` = 8-6 xx 4 + 11 xx 2 -6`
` = 8-24 + 22 -6`
` = 30 - 30`
p(2) = 0
And
`p(3) = (3)^3 - 6 xx (3)^2 + 11 xx 3 - 6`
` = 27 - 6 xx 9 + 11 xx 3 -6`
` = 27 - 54 + 33 -6`
` = 60 - 60`
p(3) = 0
Hence, x = 1, 2, 3 are the zeros of the polynomial p(x).
APPEARS IN
RELATED QUESTIONS
Write the degrees of the following polynomials:
`12-x+2x^3`
Write the degrees of the following polynomials:
7
Identify polynomials in the following:
`g(x)=2x^3-3x^2+sqrtx-1`
The polynomials ax3 + 3x2 − 3 and 2x3 − 5x + a when divided by (x − 4) leave the remainders R1 and R2 respectively. Find the values of the following cases, if 2R1 − R2 = 0.
If x − 2 is a factor of the following two polynomials, find the values of a in each case x3 − 2ax2 + ax − 1.
In the following two polynomials, find the value of a, if x − a is factor x6 − ax5 + x4 − ax3 + 3x − a + 2.
x4 − 7x3 + 9x2 + 7x − 10
x3 − 10x2 − 53x − 42
If f(x) = x4 − 2x3 + 3x2 − ax − b when divided by x − 1, the remainder is 6, then find the value of a + b
Factorise the following:
12x2 + 36x2y + 27y2x2