Advertisements
Advertisements
Question
In the following two polynomials, find the value of a, if x − a is factor x6 − ax5 + x4 − ax3 + 3x − a + 2.
Solution
Let `f(x) = x^6 - ax^5 + x^4 - ax^3 + 3x - a + 2` be the given polynomial.
By factor theorem, (x − a) is a factor of the polynomial if f(a) = 0
Therefore,
`f(a) = a^6 -a(a)^5 + (a)^4 + (a)^4 - a(a)^3 + 3(a) - a + 2 = 0`
`a^6 - a^6 + 4^4 - a^4 + 2a + 2 = 0`
`2a + 2 = 0`
`a=-1`
Thus, the value of a is − 1.
APPEARS IN
RELATED QUESTIONS
f(x) = 4x3 − 12x2 + 14x − 3, g(x) 2x − 1
If the polynomials ax3 + 3x2 − 13 and 2x3 − 5x + a, when divided by (x − 2) leave the same remainder, find the value of a.
f(x) = 3x4 + 17x3 + 9x2 − 7x − 10; g(x) = x + 5
f(x) = x5 + 3x4 − x3 − 3x2 + 5x + 15, g(x) = x + 3
If x3 + ax2 − bx+ 10 is divisible by x2 − 3x + 2, find the values of a and b.
x3 − 23x2 + 142x − 120
2y3 + y2 − 2y − 1
Factorise the following:
(p – q)2 – 6(p – q) – 16
If (x + 5) and (x – 3) are the factors of ax2 + bx + c, then values of a, b and c are
Factorise:
x3 + x2 – 4x – 4