Advertisements
Advertisements
Question
If x − 2 is a factor of the following two polynomials, find the values of a in each case x5 − 3x4 − ax3 + 3ax2 + 2ax + 4.
Solution
Let f(x) = x5 − 3x4 − ax3 + 3ax2 + 2ax + 4 be the given polynomial.
By the factor theorem, (x − 2) is a factor of f(x), if f (2) = 0
Therefore,
`f(2) = (2)^3 - 3(2)^4 - a(2)^3 + 3a(2)^2 + 4 = 0 `
`32 - 48 - 8a + 12a + 4a + 4 = 0`
` - 12 + 8a = 0`
` a = 3/2`
Thus, the value of a is 3/2.
APPEARS IN
RELATED QUESTIONS
Identify polynomials in the following:
`h(x)=x^4-x^(3/2)+x-1`
If the polynomials ax3 + 3x2 − 13 and 2x3 − 5x + a, when divided by (x − 2) leave the same remainder, find the value of a.
f(x) = 2x3 − 9x2 + x + 12, g(x) = 3 − 2x
For what value of a is (x − 5) a factor of x3 − 3x2 + ax − 10?
x3 + 13x2 + 32x + 20
x4 − 2x3 − 7x2 + 8x + 12
If both x − 2 and \[x - \frac{1}{2}\] are factors of px2 + 5x + r, then
Factorise the following:
12x2 + 36x2y + 27y2x2
Factorise:
x3 – 6x2 + 11x – 6
Factorise:
3x3 – x2 – 3x + 1