Advertisements
Advertisements
प्रश्न
If x − 2 is a factor of the following two polynomials, find the values of a in each case x5 − 3x4 − ax3 + 3ax2 + 2ax + 4.
उत्तर
Let f(x) = x5 − 3x4 − ax3 + 3ax2 + 2ax + 4 be the given polynomial.
By the factor theorem, (x − 2) is a factor of f(x), if f (2) = 0
Therefore,
`f(2) = (2)^3 - 3(2)^4 - a(2)^3 + 3a(2)^2 + 4 = 0 `
`32 - 48 - 8a + 12a + 4a + 4 = 0`
` - 12 + 8a = 0`
` a = 3/2`
Thus, the value of a is 3/2.
APPEARS IN
संबंधित प्रश्न
\[f(x) = 3 x^4 + 2 x^3 - \frac{x^2}{3} - \frac{x}{9} + \frac{2}{27}, g(x) = x + \frac{2}{3}\]
f(x) = 2x3 − 9x2 + x + 12, g(x) = 3 − 2x
In the following two polynomials, find the value of a, if x + a is a factor x3 + ax2 − 2x +a + 4.
If x3 + ax2 − bx+ 10 is divisible by x2 − 3x + 2, find the values of a and b.
x3 + 2x2 − x − 2
x3 + 13x2 + 32x + 20
Write the remainder when the polynomialf(x) = x3 + x2 − 3x + 2 is divided by x + 1.
If f(x) = x4 − 2x3 + 3x2 − ax − b when divided by x − 1, the remainder is 6, then find the value of a + b
One factor of x4 + x2 − 20 is x2 + 5. The other factor is
Factorise the following:
z² + 4z – 12