Advertisements
Advertisements
प्रश्न
x3 + 13x2 + 32x + 20
उत्तर
Let `f(x) = x^3 + 13x^2 + 32x + 20` be the given polynomial.
Now, putting x= -1,we get
`⇒ f(-1) = (-1)^3 + 13(-1)^2 + 32(-1) + 20`
` = -1 + 13 - 32 + 20 = -33 + 33`
` =0`
Therefore, (x +1)is a factor of polynomial f(x).
Now,
`f(x) = x^2 (x+1)+12x (x+1)+20(x+1)`
` = (x+1){x^2 + 12x + 20}`
` = (x+1){x^2 + 10x + 2x + 20}`
` = (x+1)(x+2)(x + 10)`
Hence
(x +1),(x+2) and (x+10) are the factors of polynomial f(x).
APPEARS IN
संबंधित प्रश्न
Write the degrees of the following polynomials:
7
If `f(x)=2x^2-13x^2+17x+12` find `f-(3)`
Find the remainder when x3 + 3x2 + 3x + 1 is divided by 5 + 2x .
If x − 2 is a factor of the following two polynomials, find the values of a in each case x5 − 3x4 − ax3 + 3ax2 + 2ax + 4.
If both x + 1 and x − 1 are factors of ax3 + x2 − 2x + b, find the values of a and b.
x3 − 2x2 − x + 2
x4 − 2x3 − 7x2 + 8x + 12
If x + 1 is a factor of x3 + a, then write the value of a.
If (x − 1) is a factor of polynomial f(x) but not of g(x) , then it must be a factor of
Factorise the following:
t² + 72 – 17t