Advertisements
Advertisements
प्रश्न
x3 + 13x2 + 32x + 20
उत्तर
Let `f(x) = x^3 + 13x^2 + 32x + 20` be the given polynomial.
Now, putting x= -1,we get
`⇒ f(-1) = (-1)^3 + 13(-1)^2 + 32(-1) + 20`
` = -1 + 13 - 32 + 20 = -33 + 33`
` =0`
Therefore, (x +1)is a factor of polynomial f(x).
Now,
`f(x) = x^2 (x+1)+12x (x+1)+20(x+1)`
` = (x+1){x^2 + 12x + 20}`
` = (x+1){x^2 + 10x + 2x + 20}`
` = (x+1)(x+2)(x + 10)`
Hence
(x +1),(x+2) and (x+10) are the factors of polynomial f(x).
APPEARS IN
संबंधित प्रश्न
If `f(x) = 2x^2 - 13x^2 + 17x + 12` find f(2)
Find the integral roots of the polynomial f(x) = x3 + 6x2 + 11x + 6.
f(x) = x4 − 3x2 + 4, g(x) = x − 2
Show that (x + 4) , (x − 3) and (x − 7) are factors of x3 − 6x2 − 19x + 84
If x140 + 2x151 + k is divisible by x + 1, then the value of k is
If x2 + x + 1 is a factor of the polynomial 3x3 + 8x2 + 8x + 3 + 5k, then the value of k is
If both x − 2 and \[x - \frac{1}{2}\] are factors of px2 + 5x + r, then
If x2 − 1 is a factor of ax4 + bx3 + cx2 + dx + e, then
Factorise the following:
x² + 10x + 24
Factorise:
x3 + x2 – 4x – 4