Advertisements
Advertisements
Question
In the following two polynomials, find the value of a, if x − a is factor (x5 − a2x3 + 2x + a + 1).
Solution
Let `f(x) = x^5 - a^2 x^3 + 2x + a `+1 be the given polynomial.
By factor theorem, (x − a) is a factor of f(x), if f(a) = 0.
Therefore,
`⇒ f(a) = (a)^5 - a^2(a)^3 + 2 (a) + a + 1 = 0`
`a^5 - a^5 + 2a + a+1 = 0`
`3a + 1 = 0`
` a= (-1)/3`
Thus, the value of a is − 1/3.
APPEARS IN
RELATED QUESTIONS
f(x) = 3x4 + 17x3 + 9x2 − 7x − 10; g(x) = x + 5
f(x) = 3x3 + x2 − 20x +12, g(x) = 3x − 2
For what value of a is (x − 5) a factor of x3 − 3x2 + ax − 10?
Find the value k if x − 3 is a factor of k2x3 − kx2 + 3kx − k.
In the following two polynomials, find the value of a, if x + a is a factor x4 − a2x2 + 3x −a.
x4 − 7x3 + 9x2 + 7x − 10
x3 − 23x2 + 142x − 120
If (3x − 1)7 = a7x7 + a6x6 + a5x5 +...+ a1x + a0, then a7 + a5 + ...+a1 + a0 =
Factorise the following:
a4 – 3a2 + 2
If x + 2a is a factor of x5 – 4a2x3 + 2x + 2a + 3, find a.