Advertisements
Advertisements
प्रश्न
In the following two polynomials, find the value of a, if x − a is factor (x5 − a2x3 + 2x + a + 1).
उत्तर
Let `f(x) = x^5 - a^2 x^3 + 2x + a `+1 be the given polynomial.
By factor theorem, (x − a) is a factor of f(x), if f(a) = 0.
Therefore,
`⇒ f(a) = (a)^5 - a^2(a)^3 + 2 (a) + a + 1 = 0`
`a^5 - a^5 + 2a + a+1 = 0`
`3a + 1 = 0`
` a= (-1)/3`
Thus, the value of a is − 1/3.
APPEARS IN
संबंधित प्रश्न
f(x) = 2x4 − 6x3 + 2x2 − x + 2, g(x) = x + 2
If the polynomials 2x3 + ax2 + 3x − 5 and x3 + x2 − 4x +a leave the same remainder when divided by x −2, find the value of a.
Show that (x + 4) , (x − 3) and (x − 7) are factors of x3 − 6x2 − 19x + 84
x4 − 7x3 + 9x2 + 7x − 10
x3 − 23x2 + 142x − 120
If \[x = \frac{1}{2}\] is a zero of the polynomial f(x) = 8x3 + ax2 − 4x + 2, find the value of a.
If x + 2 is a factor of x2 + mx + 14, then m =
Factorise the following:
5x2 – 29xy – 42y2
Factorise the following:
6x2 + 16xy + 8y2
Factorise the following:
(a + b)2 + 9(a + b) + 18