Advertisements
Advertisements
Question
f(x) = 3x4 + 17x3 + 9x2 − 7x − 10; g(x) = x + 5
Solution
It is given that f(x) = 3x4 + 17x3 + 9x2 − 7x − 10 and g(x) = x - 5
By the factor theorem, g(x) is a factor of polynomial f(x)
i.e. x+5 =0
⇒ x= -5
Therefore,
\[f( - 5) = 3 \left( - 5 \right)^4 + 17 \left( - 5 \right)^3 + 9 \left( - 5 \right)^2 - 7\left( - 5 \right) - 10\]
\[ = 3 \times 625 + 17 \times \left( - 125 \right) + 225 + 35 - 10\]
\[ = 1875 - 2125 + 250\]
\[ = 0\]
Hence, g(x) is the factor of polynomial f(x).
APPEARS IN
RELATED QUESTIONS
Identify constant, linear, quadratic and cubic polynomials from the following polynomials
`p(x)=2x^2-x+4`
If `f(x)=2x^2-13x^2+17x+12` find `f-(3)`
f(x) = x3 − 6x2 + 11x − 6, g(x) = x2 − 3x + 2
Find the value k if x − 3 is a factor of k2x3 − kx2 + 3kx − k.
x3 + 13x2 + 32x + 20
Factorize of the following polynomials:
x3 + 13x2 + 31x − 45 given that x + 9 is a factor
If x + 1 is a factor of the polynomial 2x2 + kx, then k =
If (3x − 1)7 = a7x7 + a6x6 + a5x5 +...+ a1x + a0, then a7 + a5 + ...+a1 + a0 =
Factorise the following:
12x2 + 36x2y + 27y2x2
Factorise the following:
(a + b)2 + 9(a + b) + 18