English

F(X) = X3 − 6x2 + 11x − 6, G(X) = X2 − 3x + 2 - Mathematics

Advertisements
Advertisements

Question

f(x) = x3 − 6x2 + 11x − 6, g(x) = x2 − 3x + 2

Answer in Brief

Solution

It is given that f(x) = x3 − 6x2 + 11x − 6, and g(x) = x2 − 3x + 2

We have

g(x) = x2 − 3x + 2

     ` = x^2 - 2x + x + 2`

     ` = (x - 2) (x-1)`

\[\Rightarrow \left( x - 2 \right)\]

and (x − 1) are factor of g(x) by the factor theorem.

To prove that (x − 2) and (x − 1) are the factor of f(x).

It is sufficient to show that f(2) and f(1) both are equal to zero.

`f(2) = (2)^3 - 6(2)^3 + 11(2) - 6`

       ` = 8 - 23 + 22 - 6`

       ` = 30 - 30`

 f(2) = 0

And

`f(1) = (1)^3 - 6(1)^2 + 11(1)- 6`

` = 1-6 + 11 - 6`

`  = 12 - 12`

 f (1) = 0 

Hence, g(x) is the factor of the polynomial f(x).

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Factorisation of Polynomials - Exercise 6.4 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 6 Factorisation of Polynomials
Exercise 6.4 | Q 7 | Page 24
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×