Advertisements
Advertisements
प्रश्न
Verify whether the indicated numbers is zeros of the polynomials corresponding to them in the following case:
\[p(x) = x^3 - 6 x^2 + 11x - 6, x = 1, 2, 3\]
उत्तर
To check whether the given number is the zero of the polynomial or not we have to find p(1),p(2),and p(3)
`p(x) = x^3 - 6x^2 + 11x - 6`
`p(1) = (1)^3 - 6 xx (1)^2 + 11 xx (1) - 6`
` = 1-6 xx 1 + 11 xx 1 - 6`
` = 12 - 12 = 0`
`p(2) = (2)^3 - 6 xx (2)^2 + 11 xx (2) - 6`
` = 8-6 xx 4 + 11 xx 2 -6`
` = 8-24 + 22 -6`
` = 30 - 30`
p(2) = 0
And
`p(3) = (3)^3 - 6 xx (3)^2 + 11 xx 3 - 6`
` = 27 - 6 xx 9 + 11 xx 3 -6`
` = 27 - 54 + 33 -6`
` = 60 - 60`
p(3) = 0
Hence, x = 1, 2, 3 are the zeros of the polynomial p(x).
APPEARS IN
संबंधित प्रश्न
The polynomials ax3 + 3x2 − 3 and 2x3 − 5x + a when divided by (x − 4) leave the remainders R1 and R2 respectively. Find the value of the following case, if R1 = R2.
x4 − 7x3 + 9x2 + 7x − 10
x3 − 23x2 + 142x − 120
x3 − 2x2 − x + 2
If \[x = \frac{1}{2}\] is a zero of the polynomial f(x) = 8x3 + ax2 − 4x + 2, find the value of a.
If x − 3 is a factor of x2 − ax − 15, then a =
If x + 2 and x − 1 are the factors of x3 + 10x2 + mx + n, then the values of m and n are respectively
Factorise the following:
p² – 6p – 16
Factorise the following:
5x2 – 29xy – 42y2
Factorise the following:
a4 – 3a2 + 2