Advertisements
Advertisements
प्रश्न
x3 − 2x2 − x + 2
उत्तर
Let `f(x) = x^3 - 2x^2 - x + 2` be the given polynomial.
Now, putting x =1,we get
`f(1) = (1)^3 - 2(1)^2 - (1) + 2`
` = 1-2 - 1+2 = 3 -3`
` = 0`
Therefore, (x+1)is a factor of polynomial f(x).
Now,
`f(x) = x^2 (x-1) -x(x -1) -2(x -1)`
` = (x -1){x^2 - x - 2}`
` = (x -1){x^2 - 2x + x -2}`
` = (x - 1)(x+1)(x - 2)`
Hence (x -1),(x+1) and (x -2)are the factors of polynomial f(x).
APPEARS IN
संबंधित प्रश्न
Write the coefficient of x2 in the following:
`17 -2x + 7x^2`
Write the degrees of the following polynomials
0
If the polynomials ax3 + 3x2 − 13 and 2x3 − 5x + a, when divided by (x − 2) leave the same remainder, find the value of a.
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x + 1.
f(x) = 3x3 + x2 − 20x +12, g(x) = 3x − 2
y3 − 7y + 6
If \[x = \frac{1}{2}\] is a zero of the polynomial f(x) = 8x3 + ax2 − 4x + 2, find the value of a.
Factorise the following:
8m3 – 2m2n – 15mn2
(x + y)(x2 – xy + y2) is equal to
If (x + 5) and (x – 3) are the factors of ax2 + bx + c, then values of a, b and c are