Advertisements
Advertisements
प्रश्न
y3 − 2y2 − 29y − 42
उत्तर
Let f(y) = y3 − 2y2 − 29y − 42 be the given polynomial.
Now, putting y = -2we get
`f(-2) = (-2)^ -2 (-2)^2 - 29 (-2) -42`
` = -8 -8 + 58 - 42 = -58 + 58`
` = 0`
Therefore, (y +2) is a factor of polynomial f(y).
Now,
`f(y) = y^2 (y+2) + 4y(y+2) -21(y+2)`
` = (y + 2){y^2 -4y - 21}`
` =y +2`{y^2 -7y + 3y - 21}
`=(y + 2)(y+3)(y - 7)`
Hence (y+2),(y+3) and (y - 7) are the factors of polynomial f(y).
APPEARS IN
संबंधित प्रश्न
If x = 0 and x = −1 are the roots of the polynomial f(x) =2x3 − 3x2 + ax + b, find the value of a and b.
Find rational roots of the polynomial f(x) = 2x3 + x2 − 7x − 6.
If the polynomials ax3 + 3x2 − 13 and 2x3 − 5x + a, when divided by (x − 2) leave the same remainder, find the value of a.
f(x) = 3x3 + x2 − 20x +12, g(x) = 3x − 2
Show that (x − 2), (x + 3) and (x − 4) are factors of x3 − 3x2 − 10x + 24.
Find the values of a and b so that (x + 1) and (x − 1) are factors of x4 + ax3 − 3x2 + 2x + b.
If both x + 1 and x − 1 are factors of ax3 + x2 − 2x + b, find the values of a and b.
If x − 3 is a factor of x2 − ax − 15, then a =
Factorise the following:
x² + 10x + 24
If x + 2a is a factor of x5 – 4a2x3 + 2x + 2a + 3, find a.