Advertisements
Advertisements
प्रश्न
If x + 2a is a factor of x5 – 4a2x3 + 2x + 2a + 3, find a.
उत्तर
According to the question,
Let p(x) = x5 – 4a2x3 + 2x + 2a + 3 and g(x) = x + 2a
g(x) = 0
⇒ x + 2a = 0
⇒ x = –2a
Therefore, zero of g(x) = –2a
We know that,
According to the factor theorem,
If g(x) is a factor of p(x), then p(–2a) = 0
So, substituting the value of x in p(x), we get,
p(–2a) = (–2a)5 – 4a2(–2a)3 + 2(–2a) + 2a + 3 = 0
⇒ –32a5 + 32a5 – 2a + 3 = 0
⇒ –2a = –3
⇒ a = `3/2`
APPEARS IN
संबंधित प्रश्न
Write the coefficient of x2 in the following:
`9-12x +X^3`
Identify polynomials in the following:
`h(x)=x^4-x^(3/2)+x-1`
If `f(x) = 2x^2 - 13x^2 + 17x + 12` find f(2)
f(x) = 4x4 − 3x3 − 2x2 + x − 7, g(x) = x − 1
f(x) = x3 −6x2 − 19x + 84, g(x) = x − 7
In the following two polynomials, find the value of a, if x + a is a factor x3 + ax2 − 2x +a + 4.
Using factor theorem, factorize each of the following polynomials:
x3 + 6x2 + 11x + 6
x3 − 23x2 + 142x − 120
Factorise the following:
x² + 10x + 24
Factorise the following:
t² + 72 – 17t